2023
Haas, R., Engelbrecht, V., Lampret, O., Yadav, S., Apfel, U.P., Leimkühler, S., Happe, T. 2023. The [4Fe-4S]-Cluster of HydF is not Required for the Binding and Transfer of the diiron site of [FeFe]-Hydrogenases. Chembiochem., e202300222 doi: 10.1002/cbic.202300222
Kumar, H., Khosraneh, M., Bandaru, S.S.M., Schulzke, C., Leimkühler, S. 2023. The Mechanism of Metal-Containing Formate Dehydrogenases Revisited: The Formation of Bicarbonate as Product Intermediate Provides Evidence for an Oxygen Atom Transfer Mechanism. Molecules., 28(4):1537. doi: 10.3390/molecules28041537
2022
Soboh, B., Adrian, L. and Stripp, S.T. 2022. An in vitro reconstitution system to monitor iron transfer to the active site during the maturation of [NiFe]-hydrogenase. J. Biol. Chem. 298, 1-12
Zhang, H., Quintana, J., Ütkür, K., Adrian, L., Hawer, H., Mayer, K., Gong, X., Castanedo, L., Schulten, A., Janina, N., Peters, M., Wirtz, M., Brinkmann, U., Schaffrath, R., Krämer, U. 2022, Translational fidelity and growth of Arabidopsis require stress-sensitive diphthamide biosynthesis. Nature Communications, 13, 4009 https://doi.org/10.1038/s41467-022-31712-7
Schaupp, S., Arriaza-Gallardo, F.J., Pan, H.-J., Kahnt, J., Angelidou, G., Paczia, N., Costa, K., Hu, X., Shima, S. 2022, In vitro biosynthesis of the [Fe]-hydrogenase cofactor verifies the proposed biosynthetic precursors. Angew. Chem. Int. Ed. in press. https://doi.org/10.1002/anie.202200994
2021
Stripp, S.T., Oltmanns, J., Muller, C.S., Ehrenberg, D., Schlesinger, R., Heberle, J., Adrian, L., Schünemann, V., Pierik, A.J. and Soboh, B. 2021. Electron inventory of the iron-sulfur scaffold complex HypCD essential in [NiFe]-hydrogenase cofactor assembly. Biochemical journal, 478, 3281-3295
Watanabe, T., Pfeil-Gardiner, O., Kahnt, J., Koch, J., Shima, S., Murphy, B.J. 2021. Three-megadalton complex of methanogenic electron-biforcating and CO2-fixing enzymes. Science, 373, 1151-1155.
Pan, H.-J., Huang, G., Wodrich, M.D., Tirani, F.F., Ataka, K., Shima, S., Hu, X. 2021. Diversifying metal-ligand cooperative catalysis in semi-synthetic [Mn]-hydrogenases. Angew. Chem. Int. Ed. 60, 13350913357.
Watanabe, T., Shima, S. 2021. MvhB-type polyferredoxin as an electron-transfer chain in putative redox-enzyme complexes. Chem. Lett. 50, 353-360.
Schneider, Ch., Groß, S.J., Demeshko, S., Bontemps, S., Meyer, F. and Werncke, C.G. 2021.Synthesis and characterisation of a very low-coordinate diferrous [2Fe–2S]0 unit. Chem. Commun. 57, 10751–10754. https://doi.org/10.1039/D1CC04196G
Rohde, M., Laun, K., Zebger, I., Stripp, S.T., Einsle, O. 2021. Two ligand-binding sites in CO-reducing V nitrogenase reveal a general mechanistic principle. Sci. Adv., 7, eabg4474
Peters, J.W., Einsle, O., Dean, D.R., DeBeer, S., Hoffmann, B.M., Holland, P.L., Seefeldt, L.C. 2021. Comment on “Structural evidence for a dynamic metallocofactor during N2 reduction by Mo-nitrogenase”. Science, 371:eabe5481.
Schneider, Ch. Demeshko, S., Meyer, F. and Werncke, C.G. 2021. A Molecular Low-Coordinate [Fe-S-Fe] Unit in Three Oxidation States. Chem.Eur.J., 27, 6348-6353. doi.org/10.1002/chem202100336
2020
Huang, G., Arriaza-Gallardo, F.J., Wagner, T., Shima, S. 2020. Crystal structures of [Fe]-hydrogenase form Methanolacinia paynteri suggest a path of the FeGP-cofactor incorporation process. Inorganics, 8, 50, doi:10.3390/inorganics8090050.
Huang, G., Wagner, T., Demmer, U., Warkentin, E., Ermler, U., Shima, S. 2020. The hydride transfer process in NADP dependent methylene-tetrahydromethanopterin dehydrogenase. J. Mol. Biol., 432, 2042-2054.
Shima, S., Huang, G., Wagner, T., Ermler, U. 2020. Structural Basis of Hydrogenotrophic Methanogenesi. Annu. Rev. Microbiol., 74, 713-33.
Huang, G., Wagner, T., Ermler, U., Shima, S. 2020. Methanogenesis involves direct hydride transfer from H2 to an organic substrate. Nat. Rev. Chem., 4, 213-221.
Jagilinki, B.P., Ilic, S., Trncik, C., Tyryshkin, A.M., Pike, D.H., Lubitz, W., Bill, E., Einsle, O., Birrell, J.A., Akabayov, B., Noy, D., Nanda, V. 2020. In Vivo Biogenesis of a De Novo Designed Iron-Sulfur Protein. ACS. Synth. Biol., 9, 3400-3407.
Rohde, M., Grunau, K., Einsle, O. 2020. CO binding to the FeV Cofactor of CO-reducing Vanadium Nitrogenase at Atomic Resolution. Angew. Chem. Intl. Ed., 59, 23626-23630.
Djurdjevic, I., Trncik, C., Rohde, M., Gies-Elterlein, J., Grunau, K., Schneider, F., Andrade, S.L., Einsle, O. 2020. The Cofactors of Nitrogenases. Met. Ions. Life. Sci., 20, 257-312.
Einsle, O., Rees, D.C. 2020. Structural Enzymology of Nitrogenases Enzymes. Chem. Rev., 120, 4969-5004.
Jasper, J., Ramos, J.V., Trncik, C., Jahn, D, Einsle, O., Layer, G., Moser, J. 2020. Chimeric Interaction of Nitrogenase-Like Reductases with the MoFe Protein of Nitrogenase. Chem. Bio. Chem., 21, 1733-1741.
Mendel, R.R., Hercher, T.W., Zupok, A., Hasnat, M.A., Leimkühler, S. 2020. The Requirement of Inorganic Fe-S Clusters for the Biosynthesis of the Organometallic Molybdenum Cofactor. INORGANICS, 8(7): doi 10.3390/inorganics8070043
Folgosa, F., Pelmenschikov, V., Keck, M., Lorent, C., Yoda, Y., Birrell, J. A., Kaupp, M., Teixeira, M., Tamasaku, K., Limberg, C., Lauterbach, L. Hydroxo-bridged active site of flavodiiron NO reductase revealed by spectroscopy and computations. ChemRxiv. Preprint. https://doi.org/10.26434/chemrxiv.12928331.v1
Rodríguez-Maciá, Breuer, N., DeBeer, S., Birrell, J. A. Insight into the redox behavior of the [4Fe-4S] subcluster in [FeFe] hydrogenases. ACS Catal. Accepted manuscript.
Sanchez, M. L. K., Konecny, S. E., Narehood, S. M., Reijerse, E. J., Lubitz, W., Birrell, J. A., Dyer, R. B. 2020. The laser-induced potential-jump: a method for rapid electron injection into oxidoreductase enzymes. J. Phys. Chem. 124, 8750–8760. https://doi.org/10.1021/acs.jpcb.0c05718
Takeda, K., Kusuoka, R., Birrell, J. A., Yoshida, M., Igarashi, K., Nakamura, N. 2020. Bioelectrocatalysis based on direct electron transfer of fungal pyrroloquinoline quinone-dependent dehydrogenase lacking the cytochrome domain. Electrochim. Acta 359, 136982. https://doi.org/10.1016/j.electacta.2020.136982
Oughli, A. A., Hardt, S., Rüdiger, O., Birrell, J. A., Plumeré, N. 2020. Reactivation of sulfide protected [FeFe] hydrogenase in a redox-active hydrogel. Chem. Commun. 56, 9958-9961. https://doi.org/10.1039/D0CC03155K
Rodríguez-Maciá, P., Galle, L., Bjornsson, R., Lorent, C., Zebger, I., Yoda, Y., Cramer, S., DeBeer, S., Span, I., Birrell, J. A. 2020. Caught in the Hinact: Crystal structure and spectroscopy reveal a sulfur bound to the active site of an O2‐stable state of [FeFe] hydrogenase. Angew. Chem. Int. Ed. 59, 16786-16794. https://doi.org/10.1002/anie.202005208
Szczesny, J., Birrell, J. A., Conzuelo, F., Lubitz, W., Ruff, A., Schuhmann, W. 2020. Redox polymer‐based high current density gas diffusion H2 oxidation bioanode using [FeFe] hydrogenase from Desulfovibrio desulfuricans in a membrane‐free biofuel cell. Angew. Chem. Int. Ed. 59, 16506-16510. https://doi.org/10.1002/anie.202006824
Reijerse, E., Birrell, J. A., Lubitz, W. 2020. Spin polarization reveals the coordination geometry of the [FeFe] hydrogenase active site in Its CO inhibited state. J. Phys. Chem. Lett. 11, 4597-4602. https://doi.org/10.1021/acs.jpclett.0c01352
Van Stappen, C., Decamps, L., Cutsail III, G. E., Bjornsson, R., Henthorn, J. T., Birrell, J. A., DeBeer, S. (2020). The spectroscopy of nitrogenases. Chem. Rev. 120, 5005-5081. https://doi.org/10.1021/acs.chemrev.9b00650
Birrell, J.A., Pelmenschikov, V., Mishra, N., Wang, H., Yoda, Y., Tamasaku, K., Rauchfuss, T.B., Cramer, S.P., Lubitz, W., DeBeer, S. 2020. Spectroscopic and computational evidence that [FeFe] hydrogenases operate exclusively with CO-bridged intermediates. J. Am. Chem. Soc. 142, 222-232. https://doi.org/10.1021/jacs.9b09745
Chongdar, N., Pawlak, K., Rüdiger, O., Reijerse, E. J., Rodríguez-Maciá, P., Lubitz, W., Birrell, J. A., Ogata, H. 2020. Spectroscopic and biochemical insight into an electron-bifurcating [FeFe] hydrogenase. J. Biol. Inorg. Chem. 25, 135-148. https://doi.org/10.1007/s00775-019-01747-1
Hawer, H., Mendelsohn, B.A., Mayer, K., Kung, A., Malhotra, A., Tuupanen, S., Schleit, J., Brinkmann, U., Schaffrath, R. 2020. Diphthamide deficiency syndrome: a novel human developmental disorder and ribosomopathy. Eur.J.Hum.Genet, 28, 1497-1508, doi: 10.1038/s41431-020-0668-y
Mészáros, L.S., Ceccaldi, P., Lorenzi, M., Redman, H.J., Pfitzner, E., Heberle, J., Senger, M., Stripp, S.T., Berggren, G. 2020. Spectroscopic investigations under whole-cell conditions provide new insight into the metal hydride chemistry of [FeFe]-hydrogenase. Chem.Sci., 11, 4608-4617, doi 10.1039/D0SC00512F
Land, H., Senger, M., Berggren, G., Stripp, S.T. 2020. Current State of [FeFe]-Hydrogenase Research: Biodiversity and Spectroscopic Investigations. ACS Catal. 10, 7069-7086, doi 10.1021/acscatal.0c01614
Lemaire, O.N., Wagner, T. 2020. Gas channel rerouting in a primordial enzyme: Structural insights of the carbon-monoxide dehydrogenase/acetyl-CoA synthase complex from the acetogen Clostridium autoethanogenum. Submitted to BBA bioenergetics (invited for the EBEC 2020 special issue).
Lemaire, O.N, Jespersen, M., Wagner, T. 2020. CO2-Fixation Strategies in Energy Extremophiles: What Can We Learn From Acetogens? Front. Microbiol. 11.486, doi: 10.3389/fmicb.2020.00486. eCollection 2020
Lorent, C., Katz, S., Duan, J.F., Kulka, C.J., Caserta, G., Teutloff, C., Yadav, S., Apfel, U.P., Winker, M., Happe, T., Horch, M., Zebger, I. 2020. Shedding Light on Proton and Electron Dynamics in [FeFe] Hydrogenases. J. of the Am. Chem. Soc., 142, 5493-5497, 10.1021/jacs.9b13075
Rodriguez-Macia, P., Galle, L.M., Bjornsson, R., Lorent, C., Zebger, I., Yoda, Y., Cramer, S.P., DeBeer, S., Span, I., Birrell, J.A. 2020. Caught in the Hinact: Crystal Structure and Spectroscopy Reveal a Sulfur Bound to the Active Site of an O2-stable State of [FeFe] Hydrogenase. Angw.Chem.Int.Ed., in press doi 10.1002/anie.202005208
Van Stappen, C., Decamps, L., Cutsail III, G.E., Bjornsson, R., Henthorn, J.T., Birrell, J.A., and DeBeer, S. 2020. The Spectroscopy of Nitrogenases. Chem. Rev., in press, doi10.1021/acs.chemrev.9b00650
Maganas, D., Kowalska, J.K., Van Stappen, C., DeBeer, S., Neese, F. 2020. Mechanism of L2,3-edge x-ray magnetic circular dichroism intensity from quantum chemical calculations and experiment-A case study on V(IV)/V(III) complexes. J.Chem.Phys. 152, 114107. doi 10.1063/1.5129029
2019
Huang, G., Wagner, T., Wodrich, M.D., Ataka, K., Bill, E., Ermler, U., Hu, X., Shima, S. 2019. The atomic-resolution crytal structure of activated [Fe]-hydrogenase. Nat. Catal., 2, 537-543.
Pan, H.-J., Huang, G., Wodrich, M.D., Tirani, F.F., Ataka, K., Shima, S., Hu, X. 2019. A catalytically active [Mn]-hydrogenase incorporating a non-native metal cofactor. Nat. Chem., 11, 669-675
Watanabe, T., Wagner, T., Huang, G., Kahnt, J., Ataka, K., Ermler, U., Shima, S. 2019. The bacterial [Fe]-hydrogenase paralog HmdII uses tetrahydrofolate derivatives as substrates. Angew. Chem. Int. Ed., 58, 3506-3510.
Hickey, D.P., Cai, R., Yang, Z.Y., Grunau, K., Einsle, O., Seefeldt, L.C., Minteer, S.D. 2019. Establishing a Thermodynamic Landscape for the Active Site of Mo-Dependent Nitrogenase. J. Am. Chem. Soc, 30, 17150-17157.
Rohde, M., Grunau, K., Djurdjevic, I., Trncik, C., Schneider, F., Gies-Elterlein, J., Einsle, O. 2019. Vanadium nitrogenase. In: Encyclopedia of Inorganic and Bioinorganic Chemistry, Messerschmidt, A. (ed.) DOI:10.1002/9781119951438.eibc2698.
Harris, D.F., Lukoyanov, D.A., Kallas, H., Trncik, C., Yang, Z.Y., Compton, P., Kelleher, N., Einsle, O., Dean, D.R., Hoffman, B.M., Seefeldt, L.C. 2019. Mo-, V-, and Fe-Nitrogenases Use a Universal Eight-Electron Reductive-Elimination Mechanism To Achieve N2 Reduction. Biochemistry, 58, 3293-3301.
Schulte, M., Frick, K., Gnandt, E., Jurkovic, S., Burschel, S., Labatzke, R., Aierstock, K., Fiegen, D., Wohlwend, D., Gerhardt, S., Einsle, O., Friedrich, T. 2019. A mechanism to prevent production of reactive oxygen species by Escherichia coli respiratory complex I. Nature Commun., 10, 2551.
Kowalska, J.K., Henthorn, J.T., Van Stappen, C., Trncik, C., Einsle, O., Keavney, D., DeBeer, S. 2019. X-ray Magnetic Circular dichroism Spectroscopy Applied to Nitrogenase and Related Models: experimental Ecidence for a Spin-Coupled Molybdenum(III) Center. Angew. Chem. Int. Ed. Engl., 58, 9373-9377.
Reijerse, E. J., Pelmenschikov, V., Birrell, J. A., Richers, C. P., Rauchfuss, T. B., Cramer, S. P., Lubitz, W. 2019. Asymmetry in the ligand coordination sphere of the [FeFe] hydrogenase active site is reflected in the magnetic spin interactions of the aza-propanedithiolate ligand. J. Phys. Chem. Lett. 10, 6794-6799. https://doi.org/10.1021/acs.jpclett.9b02354
Sanchez, M. L., Sommer, C., Reijerse, E., Birrell, J. A., Lubitz, W., Dyer, R. B. 2019. Investigating the kinetic competency of CrHydA1 [FeFe] hydrogenase intermediate states via time-resolved infrared spectroscopy. J. Am. Chem. Soc. 141, 16064-16070. https://doi.org/10.1021/jacs.9b08348
Ilina, Y., Lorent, C., Katz, S., Jeoung, J., Shima, S., Horch, M., Zebger, I., Dobbek, H. 2019. X-ray Crystallography and Vibrational Spectroscopy Reveal the Key Determinants of Biocatalytic Dihydrogen Cycling by [NiFe] Hydrogenases. Angew. Chem. Int. Ed. 51,18710-18714, 10.1002/anie.201908258
Müller, C.S., Bechtel, D.F., Auerbach, H., Wolny, J.A., Pierik, A.J., Schünemann, V. 2019. Characterization of Mycobacterium tuberculosis ferredoxin with Mössbauer spectroscopy. Hyperfine Interact 240: 117
Willistein, M., Bechtel, D.F., Müller, C.S., Demmer, U., Heimann, L., Kayastha, K., Schünemann, V., Pierik, A.J., Ullmann, G.M., Ermler, U., Boll, M. 2019. Low potential enzymatic hydride transfer via highly cooperative and inversely functionalized flavin cofactors. Nat Commun 10: 2074
Braymer, J.J., Stümpfig, M., Thelen, S., Mühlenhoff, U., Lill, R. 2019. Depletion of thiol reducing capacity impairs cytosolic but not mitochondrial iron-sulfur protein assembly machineries. BBA Mol. Cell Res., 1866, 240.
Speelman, A.L., Coric, I., Van Stappen, C., DeBeer, S., Mercado, B.Q., and Holland, P.L. 2019. Nitrogenase-Relevant Reactivity of a Synthetic Iron-Sulfur-Carbon Site. J.Am.Chem.Soc., 141,33,13148-13157, doi 10.1021/jacs.9b05353
Van Stappen, C., Davydov, R., Yang, Z-Y., Fan, R., Guo, Y., Bill, E., Seefeldt, L.C., Hoffmann, B.M., and DeBeer, S. 2019. Spectroscopic Description of the E1 State of Mo Nitrogenase Based on Mo and Fe X-ray Absorption and Mössbauer Studies. Inorg.Chem. 5, 18, 12365-12376. doi 10.1021/acs.inorgchem.9b01951
Van Stappen, C., Thorhallsson, A.T., Decamps, L., Bjornsson, R., DeBeer, S. 2019. Resolving the structure of the E1 state of Mo nitrogenase through Mo and Fe K-edge EXAFS and QM/MM calculations. Chem. Sci, 10, 9807-9821. doi10.1039/c9sc02187f
Hawer H, Hammermeister A, Ravichandran KE, Glatt S, Schaffrath R, Klassen R 2019. Roles of Elongator dependent tRNA modification pathways in neurodegeneration and cancer. Genes 10, 19.
Budhraja, R., C. Ding, P. Walter, S. Wagner, T. Reemtsma, G. Sawers, and L. Adrian. 2019. The impact of species, respiration type, growth phase and genetic inventory on absolute metal content of intact bacterial cells. Metallomics in press, doi 10.1039/C9MT00009G.
Schubert, T., L. Adrian, R. G. Sawers, and G. Diekert. 2018. Organohalide respiratory chains: composition, topology and key enzymes. FEMS Microbiol. Ecol. 94:fiy035-fiy035.
Ding, C., F. O. Enyi, and L. Adrian. 2018. Anaerobic ammonium oxidation (anammox) with planktonic cells in a redox-stable semicontinuous stirred-tank reactor. Environ. Sci. Technol. 52:5671-5681.
Budhraja, R., C. Ding, P. Walter, S. Wagner, T. Reemtsma, G. Sawers, and L. Adrian (2019) The impact of species, respiration type, growth phase and genetic inventory on absolute metal content of intact bacterial cells. Metallomics (in press) doi: 10.1039/C9MT00009G
Stegmaier K, Blinn CM, Bechtel DF, Greth C, Auerbach H, Müller CS, Jakob V, Reijerse EJ, Netz DJA, Schünemann V, Pierik AJ.Apd1 and Aim32 Are Prototypes of Bishistidinyl-Coordinated Non-Rieske [2Fe-2S] Proteins.J Am Chem Soc. doi: 10.1021/jacs.8b13274.
Kalläne SI, Hahn AW, Weyhermüller T, Bill E, Neese F, DeBeer S, and van Gastel M (2019) Spectroscopic and Quantum Chemical Investigation of Benzene-1,2-dithiolate-Coordinated Diiron Complexes with Relevance to Dinitrogen Activation. Inorg Chem, in press.
Huwiler, S.G. Löffler, C., Anselmann, S.E.L., Stärk, H.-J., von Bergen, M., Flechsler, J., Rachel, R. & Boll, M. (2019) One megadalton metalloenzyme complex in Geobacter metallireducens involved in benzene ring reduction beyond the biological redox window. Proc Natl Acad Sci 116, 2259-2264.
Mendel, RR, and TW Hercher (2019) Harvesting Moco. Nature Chem Biol DOI: 10.1038/s41589-019-0257-y.
Chrysochos, M. Ahmadi, S. Wahlefeld, Y. Rippers, I. Zebger, M. A. Mroginski, and C. Schulzke (2019) Comparison of molybdenum and rhenium oxo bis-pyrazine-dithiolene complexes – in search of an alternative metal centre for molybdenum cofactor models. Dalton Trans., 2019, 48(8), p. 2701-2714.
Riedel S, Siemiatkowska B, Watanabe M, Müller CS, Schünemann V, Hoefgen R. and Leimkühler S (2019) The ABCB7-Like Transporter PexA in Rhodobacter capsulatus Is Involved in the Translocation of Reactive Sulfur Species. Front. Microbiol., 13 March 2019
Moser J, Jasper J, Ramos JV, Sowa ST, Layer G. (2019) Expression, Purification, and Activity Analysis of Chlorophyllide Oxidoreductase and Ni2+-Sirohydrochlorin a,c-Diamide Reductase. Methods Mol Biol. 2019;1876:125-140
Moser J, Layer G. (2019) Enzymatic Systems with Homology to Nitrogenase: Biosynthesis of Bacteriochlorophyll and Coenzyme F430. Methods Mol Biol. 2019;1876:25-35.
E. Schiewer, C. S. Müller, S. Dechert, M. Bergner, J. A. Wolny, V. Schünemann, F. Meyer (2019) Effect of Oxidation and Protonation States on [2Fe−2S] Cluster Nitrosylation Giving {Fe(NO)2}9Dinitrosyl Iron Complexes (DNICs). Inorg. Chem.58, 769-784.
> 2018
Thomas, C., M. Waclawek, K. Nutschan, C. Pinske, and R.G. Sawers (2018)The extended C-terminal a-Helix of the HypC chaperone restricts recognition of large subunit precursors by the Hyp-scaffold machinery during [NiFe]-hydrogenasematuration in Escherichia coli. J. Mol. Microbiol. Biotechnol. 28:87-97. doi: 10.1159/000489929
Dragomirova, N., P. Rothe, S. Schwoch, S. Hartwig, C. Pinske, and R. G. Sawers (2018) Insights into the redox sensitivity of ChloroflexiHup-hydrogenase derived from studies in Escherichia coli: merits and pitfalls of heterologous [NiFe]-hydrogenase synthesis. Frontiers Microbiol. 9:2837. doi: 10.3389/fmicb.2018.02837
Gutiérrez-Sanz, E. Forbrig, A. P. Batista, M. M. Pereira, J. Salewski, M. A. Mroginski, R. Götz, A. L. De Lacey, J. Kozuch, I. Zebger (2018) Catalytic Activity and Proton Translocation of Reconstituted Respiratory Complex I Monitored by Surface-Enhanced Infrared Absorption Spectroscopy. Langmuir, 34, 5703–5711,
Schleicher, L., Muras, V., Claussen, B., Pfannstiel, J., Blombach, B., Dibrov, P., Fritz, G., Steuber, J. (2018) Vibrio natriegens as host for expression of multisubunit membrane protein complexes. Front. Microbiol.9:2537
Preissler, S. Wahlefeld, C. Lorent, C. Teutloff, M. Horch, L. Lauterbach, S. P. Cramer, I. Zebger, O. Lenz (2018) Enzymatic and spectroscopic properties of a thermostable [NiFe]‑hydrogenase performing H2-driven NAD+ reduction in the presence of O2. Biochimica et Biophysica Acta (BBA) – Bioenergetics, 1859, 8–18.
Senger M., Laun K., Soboh B. and Stripp S.T. (2018) Infrared Characterization of the Periplasmatic O2-sensitive [NiFe]-hydrogenase from E. coli. Catalysts 8(11) DOI: 10.3390/catal811053
Joern Krausze, Thomas W. Hercher, Dagmar Zwerschke, Martin L. Kirk, Wulf Blankenfeldt,Ralf R. Mendel and Tobias Kruse (2018). The functional principle of eukaryotic molybdenum insertases. Biochemical Journal, 475 1739–1753
Burschel, S., Kreuzer Decovic, D., Nuber, F., Stiller, M., Hofmann, M., Zupok, A., Siemiatkowska, B., Gorka, M., Leimkühler, S. and Friedrich,T. (2018) Iron-Sulfur Cluster Carrier Proteins Involved in the Assembly of Escherichia coliNADH:ubiquinone oxidoreductase (complex I). Mol. Microbiol., in press, (DOI) – 10.1111/mmi.14137
Freibert, S.A., Weiler, B.D., Bill, E., Pierik, A.J., Mühlenhoff, U., & Lill, R. (2018). Biochemical Reconstitution and Spectroscopic Analysis of Iron–Sulfur Proteins. Methods Enzymol. 599, 197-226.
Stehling, R., Paul, V.D., Bergmann, J., Basu, S., & Lill, R. (2018). Biochemical Analyses of Human Iron–Sulfur Protein Biogenesis and of Related Diseases. Methods Enzymol. 599, 227-263.
Torraco, A.*, Stehling, O.*, Stümpfig, C., Rösser, R., De Rasmo, D., Fiermonte, G., Verrigni, D., Rizza, T., Vozza, A., Di Nottia, M., Diodato, D., Martinelli, D., Piemonte, F., Dionisi-Vici, C., Bertini, E.#, Lill, R.# & Carrozzo, R.# (2018). ISCA1 mutation in a patient with infantile-onset leukodystrophy causes defects in mitochondrial [4Fe-4S] proteins. Hum. Mol. Genet. 27, 2739–2754. * Joint first authors; # joint corresponding authors.
Gurgel-Giannetti, J., Lynch, D.S., Brandão de Paiva, A.R., Lucato, L.T., Yamamoto, G., Thomsen, C., Basu, S., Freua, F., Giannetti, A.V., Della Ripa de Assis, B., Ribeiro, M.D.O., Barcelos, I., Souza, K.S., Monti, F., Melo, U.S., Amorim, S., Silva. L., Macedo-Souza, L.I., Vianna-Morgante, A.M., Hirano, M., Van der Knaap, M.S., Lill, R., Vainzof, M., Oldfors, A., Houlden, H., & Kok, F. (2018). A novel complex neurological phenotype due to a homozygous mutation in FDX2. Brain 141, 2289-2298.
Ben-Shimon, L.*, Paul, V.D.*, David-Kadoch, G.*, Volpe, M., Stümpfig, M., Bill, E., Mühlenhoff, U., Lill, R.#, Ben-Aroya, S.# (2018). Fe-S cluster coordination of the chromokinesin KIF4A alters its sub-cellular localization during mitosis. J. Cell Sci. 131, jcs211433. * Joint first authors; # joint corresponding authors. Research Highlight.
Uzarska, M.A.*, Przybyla-Toscano, J.*, Spantgar, F., Zannini, F., Lill, R., Mühlenhoff, U.#, & Rouhier, N.# (2018).Conserved functions of Arabidopsis mitochondrial late-acting maturation factors in the trafficking of iron‑sulfur clusters. Biochim. Biophys. Acta 1865, 1250-1259. * Joint first authors; # joint corresponding authors.
Stehling, O., Jeoung, J.H., Freibert, S.A., Paul, V.D., Bänfer, S., Niggemeyer, B., Rösser, R., Dobbek, H., & Lill, R. (2018). Function and crystal structure of the dimeric P-loop ATPase CFD1 coordinating an exposed [4Fe-4S] cluster for transfer to apoproteins. Proc. Natl. Acad. Sci. U.S.A. 115, E9085-E9094.
Tonini, M.L., Peña-Diaz, P., Haindrich, A.C., Basu, S., Kriegová, E., Pierik, A.J., Lill, R., MacNeill, S.A., Smith, T.K., & Lukeš, J. (2018). Branched late-steps of the cytosolic iron-sulphur cluster assembly machinery of Trypanosoma brucei. PLOS Pathog. 14, e1007326.
Hongliang Zhang and Ute Krämer (2018) Differential Diel Translation of Transcripts With Roles in the Transfer and Utilization of Iron-Sulfur Clusters in Arabidopsis. Frontiers in Plant Science 9: 1641
Rohde, M., Trncik, C., Sippel, D., Gerhardt, S. & Einsle, O. (2018) Crystal structure of VnfH, the iron protein component of vanadium nitrogenase. J. Biol. Inorg. Chem., 23, 1049-1056.
Rohde, M., Sippel, D., Trncik, C., Andrade, S.L.A. & Einsle, O. (2018) The critical E4 state of nitrogenase catalysis. Biochemistry, 57, 5497-5504.
Sippel, D., Rohde, M., Netzer, J., Trncik, C., Gies, J., Grunau, K., Djurdjevic, I., Decamps, L., Andrade, S.L.A. & Einsle, O.(2018) A bound reaction intermediate sheds light on the mechanism of nitrogenase. Science, 359, 1484-1489.
Einsle, O. (2018) Another twist on nitrogenases. Nature Microbiol., 3, 263-264.
Sippel, D. & Einsle, O. (2017) The structure of vanadium nitrogenase reveals an unusual bridging ligand. Nature Chem. Biol., 13, 956-960.
Djurdjevic, I., Einsle, O. & Decamps, L. (2017) Nitrogenase cofactor: Inspiration for model chemistry. Chem. As. J., 12, 1447-1455.
Sippel, D., Schlesier, J., Rohde, M., Trncik, C., Decamps, L., Djurdjevic, I., Spatzal, T., Andrade, S.L.A. & Einsle, O. (2017) Production and isolation of vanadium nitrogenase from Azotobacter vinelandii by molybdenum depletion. J. Biol. Inorg. Chem., 22, 161-168.
Wagner, T., Huang. G., Ermler, U., Shima, S. (2018) How [Fe]-hydrogenase from Methanothermobacter is protected against light and oxidative stress. Angew. Chem. Int. Ed. 57, 15056-15059.
Sokołowski M, Klassen R, Bruch A, Schaffrath R, Glatt S (2018) Cooperativity between different tRNA modifications and their modification pathways.Biochim Biophys Acta 1861, 409-418.
Hawer H, Ütkür K, Arend M, Mayer K, Adrian L, Brinkmann U, Schaffrath R. (2018) Importance of diphthamide modified EF2 for translational accuracy and competitive cell growth in yeast. PLoS One. 13(10):e0205870.
Van Kuiken BE, Hahn AW, Nayyar B, Schiewer CE, Lee SC, Meyer F, Weyhermüller T, Nicolaou A, Cui YT, Miyawaki J, Harada Y, DeBeer S. (2018) Electronic Spectra of Iron-Sulfur Complexes Measured by 2p3d RIXS Spectroscopy. Inorg Chem. 57:7355-7361.
Mayr SJ, Sass JO, Vry J, Kirschner J, Mader I, Hövener JB, Reiss J, Santamaria-Araujo JA, Schwarz G, Grünert SC (2018) A mild case of molybdenum cofactor deficiency defines an alternative route of MOCS1 protein maturation. J Inherit Metab Dis.. doi: 10.1007/s10545-018-0138-7.
Van Kuiken, B. E.; Hahn, A. W.; Nayyar, B.; Schiewer, C. E.; Lee, S. C.; Meyer, F.; Weyhermuller, T.; Nicolaou, A.; Cui, Y. T.; Miyawaki, J.; Harada, Y.; DeBeer, S., Electronic Spectra of Iron-Sulfur Complexes Measured by 2p3d RIXS Spectroscopy. Inorg Chem 2018, 57 (12), 7355-7361.
Huang, G., Wagner, T., Ermler, U. Bill, E., Ataka, K. and Shima, S. (2018) O2 sensitivity of [Fe]-hydrogenase in the presence of reducing substrates. Angew Chem Int Ed in press. DOI: 10.1002/anie.201712293 and 10.1002/ange.201712293.
Wagner, T., Ermler, U. & Shima, S. (2018) Tungsten-containing formylmethanofuran dehydrogenase. In Encyclopedia of Inorganic and Bioinorganic Chemistry (online). (A. Messerschmidt, Albrecht ed.) John Wiley and Sons, Inc..
Wagner, T., Watanabe, T. & Shima, S. (2018) Hydrogenotrophic methanogenesis. In Handbook of Hydrocarbon and Lipid Microbiology Series. Biogenesis of Hydrocarbons (A.J.M. Stams and D.Z. Sousa eds.) Springer, Germany.
2017
M Culka, FJ Gisdon, GM Ullmann. Computational Biochemistry—Enzyme Mechanisms Explored. Adv. Prot. Chem. Struct. Biol., 109, Pages 77-112, 2017Andreas F Geiss, Raghav Khandelwal, Dieter Baurecht, Christina Bliem, Ciril
Auerbach, V. Kalienkova, M. Schroda, V. Schünemann Mössbauer spectroscopy of the chloroplast-targeted DnaJ-like proteins CDJ3 and CDJ4Hyperfine Interact. (2017) 238: 86
Reiner-Rozman, Michael Boersch, G Matthias Ullmann, Leslie M Loew, Renate LC Naumann. pH and Potential Transients of the bc1 Complex Co-Reconstituted in Proteo-Lipobeads with the Reaction Center from Rb. sphaeroides. J. Phys. Chem. B , 121, 143-152, 2017
Chilkuri, V. G.; DeBeer, S.; Neese, F., Revisiting the Electronic Structure of FeS Monomers Using ab Initio Ligand Field Theory and the Angular Overlap Model. Inorg Chem 2017, 56 (17), 10418-10436.
Bergner, M.; Roy, L.; Dechert, S.; Neese, F.; Ye, S. F.; Meyer, F., Ligand Rearrangements at Fe/S Cofactors: Slow Isomerization of a Biomimetic [2Fe-2S] Cluster. Angew Chem Int Edit 2017, 56 (17), 4882-4886.
Hahn, A. W.; Van Kuiken, B. E.; al Samarai, M.; Atanasov, M.; Weyhermuller, T.; Cui,T.; Miyawaki, J.; Harada, Y.; Nicolaou, A.; DeBeer, S., Measurement of the Ligand Field Spectra of Ferrous and Ferric Iron Chlorides Using 2p3d RIXS. Inorg Chem 2017, 56 (14), 8203-8211.
Sawers, R.G., and C. Pinske (2017) Insights into [NiFe]-hydrogenase active site metallocluster assembly. In: Encyclopedia of Inorganic Chemistry – Metalloprotein Site Assembly, Chapter eibc2484. doi: 10.1002/9781119951438.eibc2484
Jaroschinsky, M., C. Pinske, and R. G. Sawers (2017) Differentialeffects of iscoperon mutations on the biosynthesis and activity of key anaerobic metalloenzymes inEscherichia coli. Microbiology 163: 878-890.doi: 10.1099/mic.0.000481.
Hartwig, S., N. Dragomirova, A. Kublik, D. Türkowsky, M. von Bergen, U. Lechner, L. Adrian, and R.G. Sawers (2017) A H2-oxidizing, 1,2,3-trichlorobenzene-reducing multienzyme complex isolated from the obligately organohalide-respiring bacterium Dehalococcoides mccartyistrain CBDB1. Environ. Microbiol. Reports 9:618-625.doi: 10.1111/1758-2229.12560.
Culka M, Huwiler SG, Boll M, Ullmann GM. (2017) Breaking Benzene Aromaticity-Computational Insights into the Mechanism of the Tungsten-Containing Benzoyl-CoA Reductase. J Am Chem Soc 139:14488-14500.
Layer G, Krausze J, Moser J. (2017) Reduction of Chemically Stable Multibonds: Nitrogenase-Like Biosynthesis of Tetrapyrroles. Adv Exp Med Biol. 2017;925:147-161.
Schmitt G., Arndt F., Kahnt J., Heider J. (2017) Adaptations to a loss-of-function mutation in the betaproteobacterium Aromatoleum aromaticum: recruitment of alternative enzymes for anaerobic phenylalanine degradation. J. Bacteriol. 199, e00383-17. doi: 10.1128/JB.00383-17.
Kaufholdt D, Baillie CK, Meinen R, Mendel RR, Hänsch R (2017). The Molybdenum Cofactor Biosynthesis Network: In vivo Protein-Protein Interactions of an Actin Associated Multi-Protein Complex. Frontiers in Plant Science, 8, 1946.
Krausze J, Probst C, Curth U, Reichelt J, Saha S, Schafflick D, Heinz DW, Mendel RR, Kruse T (2017). Synthesis of the Molybdenum Cofactor: Dimerization of the plant enzyme Cnx1E is required for substrate binding. Biochemical Journal, 474, 163–178.
Braymer, J.J. & Lill, R. (2017). Iron-sulfur cluster biogenesis and trafficking in mitochondria. J. Biol. Chem. 292, 12754–12763.
208) Boniecki, M.T.*, Freibert, S.A.*, Mühlenhoff, U., Lill, R.#, & Cygler, M.# (2017). Structure and functional dynamics of the mitochondrial Fe/S cluster synthesis complex. Nat. Commun. 8, 1287. * Joint first authors; # joint corresponding authors.
Sokołowski M, Klassen R, Bruch A, Schaffrath R, Glatt S (2017) Cooperativity between different tRNA modifications and their modification pathways. Biochim Biophys Acta [Epub ahead of print] doi: 10.1016/j.bbagrm.2017.12.003
Wagner, T., Koch, J., Ermler, U. & Shima, S. (2017) Methanogenic heterodisulfide reductase (HdrABC-MvhAGD) uses two noncubane [4Fe-4S] clusters for reduction. Science 357, 699–703.
Bai, L., Wagner, T., Xu, T., Hu, X., Ermler, U. & Shima, S. (2017) Water-bridged H-bonding network contributes to the catalysis of a SAM-dependent C-methyltransferase HcgC. Angew Chem Int Ed 56, 10806–0809.
Bai, L., Fujishiro, T., Huang, G., Koch, J., Takabayashi, A., Yokono, M., Tanaka, A., Xu, T., Hu, X., Ermler, U. & Shima, S. (2017) Towards artificial methanogenesis: biosynthesis of the [Fe]-hydrogenase cofactor and characterization of the semisynthetic hydrogenase. Faraday Discussion, 2017, 198, 37-58.
Senger, M., Stripp, S.T., Soboh, B. (2017) Proteolytic Cleavage Orchestrates Cofactor Insertion and Protein Assembly in [NiFe]-hydrogenase Biosynthesis. J Biol Chem. (28):11670-11681.
Adamson H, Robinson M, Bond PS, Soboh B, Gillow K, Simonov AN, Elton DM, Bond AM, Sawers RG, Gavaghan DJ, Parkin A. (2017) Analysis of HypD Disulfide Redox Chemistry via Optimization of Fourier Transformed ac Voltammetric Data. Anal Chem. (3):1565-1573.
Dörner K, Vranas M, Schimpf J, Straub IR, Hoeser J and Friedrich T (2017) Significance of the [2Fe-2S] Cluster N1a for Electron Transfer and Assembly of Escherichia coli Respiratory Complex I. Biochemistry, 56, 2770-2778. DOI: 10.1021/acs.biochem.6b01058
C.S. Müller, H. Auerbach, K. Stegmaier, J. A. Wolny, V. Schünemann, A. J. Pierik (2017) Mössbauer spectroscopy and DFT calculations on all protonation states of the 2Fe-2S cluster of the Rieske protein. Hyperfine Interact (2017) 238: 102
Schmitt G, Arndt F, Kahnt J, Heider J. (2017) Adaptations to a Loss-of-Function Mutation in the Betaproteobacterium Aromatoleum aromaticum: Recruitment of Alternative Enzymes for Anaerobic Phenylalanine Degradation. J Bacteriol. 199: e00383-17.
Schaffrath R, Leidel SA (2017) Wobble uridine modifications – a reason to live, a reason to die?! RNA Biol 14, 1209-1222.
Berndt, C., and Lillig, C.H. (2017) Glutathione, Glutaredoxins, and iron. Antioxid. Redox Signal. 27: 1235-1251
Lepka, K., Volbracht, K., Bill, E., Schneider, R., Rios, N., Hildebrandt, T., Ingwersen, J., Prozorovski, T., Lillig, C.H., van Horssen, J., Steinman, L., Hartung, H.-P., Radi, R., Holmgren, A., Aktas, O., and Berndt, C. (2017) Iron-sulfur Glutaredoxin 2 protects oligodendrocytes against damage induced by nitric oxide released from activated microglia. Glia 65: 1521-1534
Moore SJ, Sowa ST, Schuchardt C, Deery E, Lawrence AD, Ramos JV, Billig S, Birkemeyer C, Chivers PT, Howard MJ, Rigby SE, Layer G, Warren MJ (2017) Elucidation of the biosynthesis of the methane catalyst coenzyme F430. Nature 543:78-82.
Bühning M, Friemel M, Leimkühler S (2017) Functional Complementation Studies Reveal Different Interaction Partners of Escherichia coli IscS and Human NFS1. Biochemistry 56:4592-4605
Bühning M, Valleriani A, Leimkühler S (2017) The Role of SufS Is Restricted to Fe-S Cluster Biosynthesis in Escherichia coli. Biochemistry 56:1987-2000.
Leimkühler S (2017) Shared function and moonlighting proteins in molybdenum cofactor biosynthesis. Biol Chem 398:1009-1026.
Lindenstrauß U, Skorupa P, McDowall JS, Sargent F and C Pinske (2017) The dual-function chaperone HycH improves assembly of the formate hydrogenlyase complex. Biochem J 2017, BCJ20170431
Bergner M., L. Roy, S. Dechert, F. Neese, Shengfa Ye, and F. Meyer (2017) Ligand Rearrangements at Fe/S Cofactors: Slow Isomerization of a Biomimetic [2Fe-2S] Cluster Angew. Chem. Int. Ed. 2017, 56, 4882–4886
Marie Bergner, Sebastian Dechert, Serhiy Demeshko, Claudia Kupper, James M. Mayer, and Franc Meyer (2017) Model of the MitoNEET [2Fe−2S] Cluster Shows Proton Coupled Electron Transfer J. Am. Chem. Soc., 139: 701-707.
Sippel, D., Schlesier, J., Rohde, M., Trncik, C., Decamps, L., Djurdjevic, I., Spatzal, T., Andrade, S.L.A. & Einsle, O. (2017) Production and isolation of vanadium nitrogenase from Azotobacter vinelandii by molybdenum depletion. J. Biol. Inorg. Chem., in press.
> 2016
Florian J. Gisdon, Martin Culka, G. Matthias Ullmann. PyCPR — A Python-based Implementation of the Conjugate Peak Refinement (CPR) Algorithm for Finding Transition State Structures. J. Mol. Model., 22: 242, 2016
Pinske, C., and R.G. Sawers (2016) Anaerobic formate and hydrogen metabolismEcoSal Plus 2016 (posted 4th October 2016). doi: 10.1128/ecosalplus.ESP-0011-2016
Kublik A, D. Deobald, S. Hartwig, C.L. Schiffmann, A. Andrades, M. von Bergen, R.G. Sawers, and L. Adrian (2016) Identification of a multiprotein reductive dehalogenase complex in Dehalococcoides mccartyi strain CBDB1 suggests a protein-dependent respiratory electron transport chain obviating quinone involvement. Environ. Microbiol. 18: 3044-3056.doi: 10.1111/1462-2920.13200
Kowalska, J. K.; Hahn, A. W.; Albers, A.; Schiewer, C. E.; Bjornsson, R.; Lima, F. A.; Meyer, F.; DeBeer, S., X-ray Absorption and Emission Spectroscopic Studies of [L2Fe2S2](n) Model Complexes: Implications for the Experimental Evaluation of Redox States in Iron-Sulfur Clusters. Inorg Chem 2016, 55 (9), 4485-4497.
Schmid, G., Auerbach, H., Pierik, A.J., Schünemann, V. & Boll, M. (2016) ATP-dependent electron activation module of benzoyl-coenzyme A reductase from the hyperthermophilic archaeon Ferroglobus placidus. Biochemistry 55, 5578-5586.
Uzarska, M.A.*, Nasta, V.*, Weiler, B.D.*, Spantgar, F., Ciofi-Baffoni, S., Saviello, M.R., Gonnelli, L., Mühlenhoff, U., Banci, L.#, & Lill, R.# (2016). Mitochondrial Bol1 and Bol3 function as assembly factors for specific iron-sulfur proteins. eLife 5, e16673. * Joint first authors; # joint corresponding authors.
Melber, A,. Na, U., Vashisht, A., Weiler, B.D., Lill, R., Wohlschlegel, J.A., & Winge, D.R. (2016). Role of Nfu1 and Bol3 in iron-sulfur cluster transfer to mitochondrial clients. eLife 5, e15991.
Jüdes A, Bruch A, Klassen R, Helm M, Schaffrath R (2016) Sulfur transfer and activation by ubiquitin-like modifier system Uba4•Urm1 link protein urmylation and tRNA thiolation in yeast. Microb Cell 3, 554-564.
Bürstel, I. , E. Siebert , S. Frielingsdorf , I. Zebger , B. Friedrich & O. Lenz (2016) Synthesis of CO from the central one-carbon pool: origin of the carbonyl ligand in O2-tolerant [NiFe]-hydrogenase. Proc. Natl. Acad. Sci. U. S. A. 113:14722-14726.
Iñigo S, Nagels Durand A, Ritter A, Le Gall S, Termathe M, Klassen R, Tohge T, De Coninck B, De Clercq R, Cammue B, Fernie AR, Gevaert K, De Jaeger G, Leidel S, Schaffrath R, Van Lijsebettens M, Pauwels L, Goossens A (2016) Glutaredoxin GRXS17 associates with the Arabidopsis cytosolic iron-sulfur cluster assembly pathway. Plant Physiol 172, 858-873.